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Dirhodium(II) tetrakis[N-tetrafluorophthaloyl-(S)-tert-leu-
cinate], Rh2(S-TFPTTL)4, is an exceptionally efficient catalyst
for enantioselective tandem cyclic oxonium ylide formation
and [2,3]-sigmatropic rearrangement from �-diazo-�-ketoester
bearing cyclic allylic acetal functionality, providing the 2,8-
dioxabicyclo[3.2.1]octane core structure of zaragozic acids in
up to 93% ee.

Dirhodium(II) or copper complex-catalyzed tandem intra-
molecular oxonium ylide formation and rearrangement sequence
from diazocarbonyl precursors offers a powerful means for the
rapid construction of substituted cyclic ethers1,2 and it has found
many applications in the synthesis of natural products.3 Conse-
quently, the development of an enantioselective version of this
sequenece catalyzed by chiral metal complexes has become a
challenging objective.4,5 It has recently been suggested that a
prime requirement for high levels of asymmetric induction in
this process is the use of chiral catalyst-associated oxonium ylide
intermediates formed through differentiation of enantiotropic
ethereal oxygen lone pairs by chiral metallocarbene as it is con-
sidered unlikely that the configuration of chiral, free oxonium
ylides detached from the chiral catalyst would be preserved prior
to a subsequent rearrangement.6,7 In previous studies, we dem-
onstrated that the tandem formation and [2,3]-sigmatropic rear-
rangement of cyclic allylic8 and propargylic9 oxonium ylides
from �-diazo-�-ketoesters under the influence of dirhodium(II)
tetrakis[N-tetraphthaloyl-(S)-tert-leucinate], Rh2(S-PTTL)4 (1a)
(Figure 1), gives rearrangement products in up to 76% ee and
79% ee, respectively.

In 1998, Calter and Sugathapala reported a novel and ele-
gant approach to construct the 2,8-dioxabicyclo[3.2.1]octane
core structure 4 of zaragozic acids (e.g., zaragozic acid C,
Figure 2),10 inhibitors of the enzyme squalene synthase, based
on the generation and [2,3]-sigmatropic rearrangement of a bicy-
clic oxonium ylide from Rh2(OAc)4-catalyzed decomposition of
�-diazo-�-ketoester 3 (eq 1).11 They also demonstrated asym-
metric induction in this reaction, wherein Rh2(S-TBSP)4 (2)
afforded 4 in 47% yield and with the highest enantioselectivity

of 34% ee. As a logical extension of our studies, we directed
our efforts to improving the enantioselectivity and product yield
in this challenging system with a broad selection of our dirho-
dium(II) caraboxylate catalysts. Herein, we report that this goal
can be achieved by using Rh2(S-TFPTTL)4 (1b),

12 thereby pro-
viding the zaragozic acid core structure 4 in 72% yield with
93% ee.
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We initially explored tandem oxonium ylide formation and
rearrangement from diazoketoester 3 in toluene using 1mol% of
Rh2(S-PTTL)4 (1a) (Table 1, Entry 1). The reaction proceeded at
0 �C to completion in less than 10min, giving [2,3]-sigmatropic
rearrangement product 4 in 36% yield. The enantioselectivity of
this reaction was determined to be 7% ee by HPLC analysis. We
next evaluated the performance of Rh2(S-TFPTTL)4 (1b) and
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Figure 1. Chiral dirhodium(II) carboxylates.

O
O

OH

HO2C

OHO

O

Me

Ph

Ph
HO2C

CO2H

OAc

Me

Zaragozic Acid C

Figure 2. Structure of zaragozic acid C.

Table 1. Enantioselective tandem cyclic oxonium ylide forma-
tion and [2,3]-sigmatropic rearrangement catalyzed by chiral di-
rhodium(II) carboxylatesa

Entry
RhII

catalyst
Solvent

Temp
/�C

Time
/min

Yieldb

/%
eec

/%

1 1a Toluene 0 10 36 7
2 1b Toluene 0 10 72 93
3 1c Toluene 0 60 70 77
4 1b CF3C6H5 0 10 66 93
5 1b Hexane 23 30 52 58
6 1b CH2Cl2 0 10 40 14
7 1b Toluene 30 5 76 88
8 1b Toluene 60 <5 77 80

aAll reactions were carried out as follows: To a solution of 4a
(48.0mg, 0.2mmol) in toluene (2mL) was added RhII cata-
lyst (1mol%) at the indicated temperature. bIsolated yield.
cDetermined by HPLC [column: DAICEL CHIRALCEL
OD-H, eluent: 19:1 hexane/i-PrOH, flow rate: 1.0mL/min,
detection: UV (220 nm)].
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Rh2(S-TCPTTL)4 (1c),13 fluorinated and chlorinated analogues
of Rh2(S-PTTL)4 (1a), which could bring about an electron
deficiency on the rhodium(II) center. Gratifyingly, the reaction
under the influence of 1b produced 4 in 72% yield with 93%
ee (Entry 2). The enantioselectivity is the highest ever reported
for [2,3]-sigmatropic rearrangement of a cyclic oxonium ylide.
The preferred absolute stereochemistry of 4 was determined to
be 1S, 4S, 5S by X-ray crystallographic analysis.14 Catalysis with
1c under the same conditions required significantly longer reac-
tion times for full conversion due to its poor solubility in toluene
and resulted in 77% ee (Entry 3). A survey of solvents with 1b
revealed that toluene was the optimal solvent for this transforma-
tion in terms of both product yield and enantioselectivity (En-
tries 2 and 4–6). Quite surprisingly, altering the reaction temper-
ature was found to have only a marginal effect on the enantiose-
lectivity of the reaction (Entries 2, 7, and 8).6c,6f Provided that
Rh2(S-TFPTTL)4 functions in an asymmetric environment sim-
ilar to that in which Rh2(S-PTTL)4 functions, the notable differ-
ence in enantioselectivity between them suggests that Rh2(S-
TFPTTL)4 with minimal steric influence and a powerful elec-
tron-withdrawing effect of the fluorine substituent remains even
more strongly associated with the oxonium ylide than does
Rh2(S-PTTL)4.

15 Therefore, it seems likely that rearrangement
with the use of Rh2(S-TFPTTL)4 proceeds through the relatively
long-lived catalyst-bound oxonium ylide A to give good yield
and high enantioselectivity, whereas rearrangement with the
use of Rh2(S-PTTL)4 occurs mainly from the enantiomeric cat-
alyst-free oxonium ylides B and C in rapid equilibrium via the
free carbene16 to give low yield and inferior level of enantiocon-
trol (Scheme 1).

In summary, we have demonstrated that the fluorinated cat-
alyst Rh2(S-TFPTTL)4 is remarkably effective for enantioselec-
tive tandem bicyclic oxonium ylide generation and [2,3]-sigma-
tropic rearrangement from �-diazo-�-ketoester bearing a cyclic
allylic acetal moiety, providing the zaragozic acid core structure
in up to 93% ee. Further studies to expand the range of substrates
are currently underway.17
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